RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION **** EXAMEN DU BACCALAURÉAT	Épreuve : SCIENCES DE LA VIE ET DE LA TERRE Section : Sciences expérimentales		
	SESSION 2016	Session de contrôle	

Le sujet comporte 4 pages numérotées de 1/4 à 4/4

Première partie (8 points)

I- QCM (4 points)

Pour chacun des items suivants (de 1 à 8), il peut y avoir une (ou deux) réponse(s) correcte(s). Reportez sur votre copie le numéro de chaque item et indiquez dans chaque cas la (ou les deux) lettre(s) correspondant à la (ou aux deux) réponse(s) correcte(s).

NB : Toute réponse fausse annule la note attribuée à l'item.

1) La ménopause est marquée par :

- a- un arrêt de l'activité utérine.
- b- une sécrétion cyclique de FSH.
- c- une sécrétion élevée et continue de LH.
- d- une sécrétion cyclique de progestérone.

2) Le brassage interchromosomique qui se produit dans des spermatocytes I à 2n = 8 est à l'origine de l'obtention de :

- a- 4 types de spermatozoïdes génétiquement différents.
- b- 8 types de spermatozoïdes génétiquement différents.
- c- 16 types de spermatozoïdes génétiquement différents.
- d- 32 types de spermatozoïdes génétiquement différents.

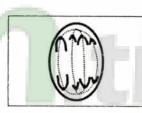
3) La cellule germinale représentée par le schéma ci-contre et qui provient d'une cellule mère à 2n = 8 évolue en :

- a- 2 spermatides.
- b- 2 spermatogonies.
- c- 2 spermatocytes II.
- d- un ovocyte II et un premier globule polaire.

4) Les fibres α parcourant la racine antérieure d'un nerf rachidien sont :

- a- des axones.
- b- des dendrites.
- c- des voies nerveuses motrices.
- d- des voies nerveuses afférentes.

5) La stimulation efficace du bout périphérique d'un nerf pneumogastrique sectionné entraîne :

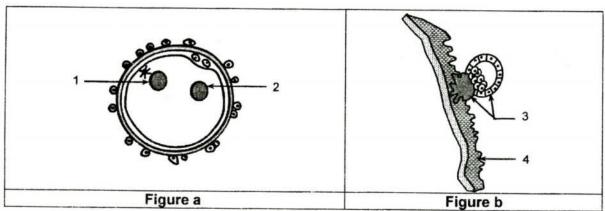

- a- une cardiomodération.
- b- une sécrétion d'adrénaline.
- c- une vasoconstriction des artérioles.
- d- une augmentation de la pression artérielle.

6) Lors de la régulation de la pression artérielle, le message nerveux parcourt le circuit suivant :

- a- barorécepteurs → centres bulbaires → nerfs de Héring et de Cyon → nerfs sympathiques et parasympathiques → cœur.
- b- barorécepteurs → nerfs sympathiques et parasympathiques → centres bulbaires → nerfs de Héring et de Cyon → cœur.
- c- barorécepteurs → nerfs de Héring et de Cyon → centres bulbaires → nerfs sympathiques et parasympathiques → cœur.
- d- barorécepteurs → nerfs de Héring et de Cyon → nerfs sympathiques et parasympathiques → centres bulbaires → cœur.

7) La surface de la membrane du lymphocyte B comporte :

- a- des molécules HLA I.
- b- des récepteurs TCR.
- c- des immunoglobulines E (IgE).
- des immunoglobulines de surface (IgS).



8) Les lymphocytes T suppresseurs interviennent dans la réponse immunitaire spécifique en :

- a- sécrétant l'histamine.
- b- sécrétant la perforine.
- c- assurant une régulation négative.
- d- favorisant la prolifération des lymphocytes.

II- Procréation (4 points)

La figure a du document 1 illustre une phase de la fécondation. La figure b du document 1 illustre la nidation.

Document 1

- 1) Légendez le document 1 en reproduisant les numéros des flèches (de 1 à 4) sur votre copie.
- a- Expliquez le mécanisme de la pénétration du spermatozoïde à l'intérieur de l'ovocyte II.
 b- Citez les transformations cytologiques et nucléaires qui se déroulent depuis la pénétration du spermatozoïde jusqu'à la phase illustrée par la figure a.
- 3) Expliquez comment l'élément désigné par la flèche n°3 contribue au maintien de la grossesse.

Deuxième partie (12 points)

I- Immunité (7points)

Afin d'étudier certains aspects du déroulement de la réponse immunitaire spécifique dirigée contre un microbe, on réalise les deux expériences suivantes :

1) Expérience 1 :

On prélève, à partir de la rate d'une souris de race A non immunisée contre un microbe M_1 , des macrophages et des lymphocytes L_1 et L_2 avec lesquels on réalise quatre cultures différentes en présence du microbe M_1 .

On cherche ensuite, dans chaque culture, la présence ou l'absence d'interleukine 1, d'interleukine 2 et de lymphocytes T cytotoxiques (LTc).

Le document 2 résume la composition des cultures et les résultats correspondants.

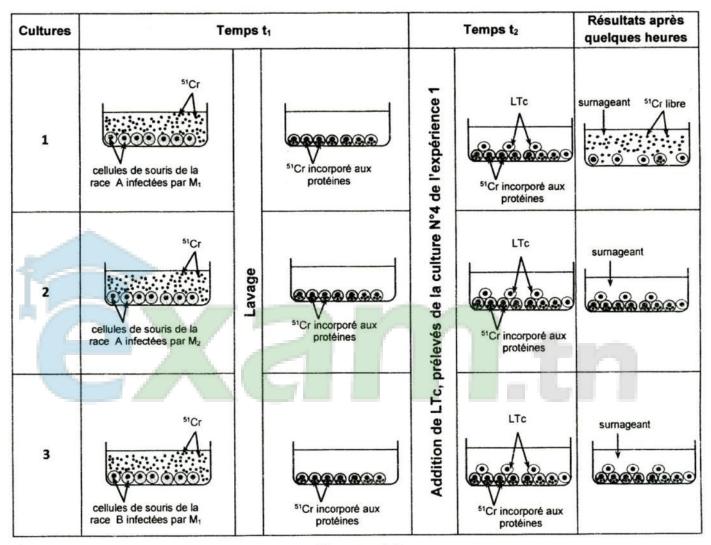
	cultures	Interleukine 1	Interleukine 2	LTc
1	macrophages + L ₁ + microbes M ₁	+	+	-
2	macrophages + L ₂ + microbes M ₁	+	-	-
3	L ₁ + L ₂ + microbes M ₁	-	-	
4	macrophages + L ₁ + L ₂ + microbes M ₁	+	+	+
		+ : présence		: absence

Document 2

- a- A partir de l'exploitation des résultats de l'expérience 1 et en faisant appel à vos connaissances :
 - précisez l'origine de l'interleukine 1 et de l'interleukine 2.
 - identifiez les lymphocytes L₁ et L₂.
 - dégagez la condition d'obtention des LTc.

b- En vous basant sur les informations dégagées précédemment et en faisant appel à vos connaissances, expliquez le mécanisme du déroulement de la réponse immunitaire conduisant à l'obtention des LTc.

2) Expérience 2:


Des cellules de souris de la race A (expérience 1) et des cellules de souris d'une race B, infectées par le microbe M₁ ou un autre microbe M₂, sont cultivées au temps t₁, en présence de Chrome marqué (⁵¹Cr).

Le Chrome est un élément chimique qui a la propriété de pénétrer à l'intérieur d'une cellule et de se lier à ses protéines intracellulaires.

Après culture, le Chrome libre est éliminé par lavage et les cellules infectées, ayant incorporées le ⁵¹Cr, sont mises, au temps t₂, en contact avec des LTc prélevés de la culture N°4 de l'expérience 1.

Après quelques heures de mise en culture, on cherche la présence ou l'absence de Chrome libre dans le surnageant.

Le document 3 traduit schématiquement le déroulement de l'expérience 2 et les résultats correspondants.

Document 3

- a- Analysez les résultats de l'expérience 2 en vue de :
 - justifier la présence ou l'absence de Chrome libre dans chaque surnageant.
 - dégager la condition d'action des LTc.
- b- A partir des informations dégagées de l'expérience 2 et en faisant appel à vos connaissances, expliquez le mode d'action du LTc.

II- Génétique des diploïdes (5 points)

On se propose d'étudier le mode de transmission de deux caractères héréditaires déterminés par deux couples d'allèles chez un insecte :

- ❖ Le couple (A₁, A₂) contrôlant la couleur de l'abdomen avec :
 - A₁: allèle qui détermine le phénotype abdomen coloré.
 - A₂: allèle qui détermine le phénotype abdomen incolore.
- Le couple (B₁, B₂) contrôlant la présence ou l'absence d'ailes avec :
 - B₁: allèle qui détermine le phénotype présence d'ailes.
 - B₂: allèle qui détermine le phénotype absence d'ailes.

1) On réalise le premier croisement suivant :

Une lignée N_1 à abdomen coloré et sans ailes est croisée avec une lignée N_2 à abdomen incolore et présentant des ailes. Les descendants de la F1 obtenus sont à abdomen légèrement coloré et présentent des ailes.

Exploitez le résultat de ce croisement en vue :

- a- de déterminer la relation de dominance entre les allèles contrôlant chacun des deux caractères étudiés.
- b- d'écrire les génotypes possibles des lignées N₁, N₂ et des descendants de la F₁.
- 2) En envisageant chaque possibilité quant à la localisation des gènes :
 - expliquez, schéma à l'appui, le comportement des chromosomes aboutissant à la formation des gamètes des individus de la F₁.
 - précisez les proportions théoriques des différents types de gamètes.

3) On réalise le deuxième croisement suivant :

Des individus de la F₁ sont croisés avec des individus de la lignée N₁. Parmi les descendants obtenus, 45% sont à abdomen légèrement coloré et présentent des ailes.

Exploitez le résultat de ce croisement en vue de discuter la localisation des deux couples d'allèles contrôlant les deux caractères étudiés.