RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION ♦♦♦♦	Épreuve pratique d'informatique				
EXAMEN DU BACCALAURÉAT SESSION 2016	Durée : 1h	Coefficient: 0.5			
Sections : Maths, Sciences expérimentales et techniques	Date : 19 mai 2016				

Important:

1) Une solution modulaire au problème est exigée.

2) Enregistrez au fur et à mesure votre programme dans le dossier Bac2016 situé à la racine C: en lui donnant comme nom votre numéro d'inscription (6 chiffres).

Un entier N est dit unitairement parfait s'il est égal à la somme de ses diviseurs unitaires sauf lui-même.

On appelle diviseur unitaire d'un entier N, tout entier D qui vérifie les conditions suivantes :

- D est un diviseur de N.
- **D** et (N Div D) sont premiers entre eux.

NB: Deux nombres sont dits premiers entre eux si leur plus grand commun diviseur (PGCD) est égal à 1.

Exemple 1 : Pour N = 36,

N n'est pas un entier unitairement parfait car il n'est pas égal à la somme de ses diviseurs unitaires :

Les diviseurs de 36	1	2	3	4	6	9	12	18
36 DIV diviseur	36	18	12	9	6	4	3	2
Test de primalité entre eux	oui	non	non	oui	non	oui	non	non
Les diviseurs unitaires de 36	1			4		9		
La somme des diviseurs unitaires de 36	14 (≠ 36)							

Exemple 2 : Pour N = 60

N est un entier unitairement parfait car il est égal à la somme de ses diviseurs unitaires :

Les diviseurs de 60	1	2	3	4	5	6	10	12	15	20	30
60 DIV diviseur	60	30	20	15	12	10	6	5	4	3	2
Test de primalité entre eux	oui	non	oui	oui	oui	non	non	oui	oui	oui	non
Les diviseurs unitaires de 60	1		3	4	5			12	15	20	
La somme des diviseurs unitaires de 60						60					

On se propose d'écrire un programme Pascal permettant de déterminer et d'afficher tous les nombres unitairement parfaits de l'intervalle [a,b] (avec $2 \le a < b \le 100$). Pour cela, on donne l'algorithme du programme principal suivant :

- 0) Début UnitParf
- 1) Répéter

Ecrire ("a = "), Lire (a)

Ecrire ("b = "), Lire (b)

Jusqu'à $(2 \le a)$ et $(a \le b)$ et $(b \le 100)$

- 2) Proc Afficher (a, b)
- 3) Fin UnitParf

Travail demandé:

- a. Traduire l'algorithme UnitParf en un programme Pascal et ajouter les déclarations nécessaires.
- b. Transformer la séquence n°1 en un module et apporter les modifications nécessaires dans le programme principal.
- c. Développer le module Afficher qui permet d'afficher tous les nombres unitairement parfaits de l'intervalle [a,b].
 - N.B: On pourra utiliser la fonction Test_Primalité ci-desssous, qui vérifie si deux entiers p et k sont premiers entre eux:

```
Function Test_Primalite (p, k : Byte) : Boolean;

Begin

While (p <> k) Do

If p > k Then p := p-k Else k := k-p;

Test_Primalite := (p=1);

End;
```

Grille d'évaluation:

	Questions	Nombre de points			
a.	Traduction de l'algorithme UnitParf en Pascal + Ajout	4,5 + 1			
b.	des déclarations nécessaires. Transformation de la séquence n°1 en un module +	4 ÷ 1			
c.	Modifications nécessaires dans le programme principal. Développement du module Afficher.	9,5			

-Xalllitn